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Daniel Gil Muñoz Method to compute the associated order



Introduction
Determination of the associated order

Induced Hopf Galois structures

Table of contents

1 Introduction

2 Determination of the associated order

3 Induced Hopf Galois structures
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Determination of the associated order

Induced Hopf Galois structures

L/K finite extension of fields, H K -algebra acting on L.

ρH : H −→ EndK (L)
h 7−→ x 7→ h · x

Definition
A Hopf Galois structure in L/K is a pair (H, ·) where H is a
K -Hopf algebra and · is a K -linear action of H over L such that:

1. The action · endows L with H-module algebra structure.
2. The canonical map j = (1, ρH) : L⊗K H −→ EndK (L) is a

K -linear isomorphism.
We also say that L/K is H-Galois.

Daniel Gil Muñoz Method to compute the associated order



Introduction
Determination of the associated order

Induced Hopf Galois structures

L/K finite extension of fields, H K -algebra acting on L.

ρH : H −→ EndK (L)
h 7−→ x 7→ h · x

Definition
A Hopf Galois structure in L/K is a pair (H, ·) where H is a
K -Hopf algebra and · is a K -linear action of H over L such that:

1. The action · endows L with H-module algebra structure.
2. The canonical map j = (1, ρH) : L⊗K H −→ EndK (L) is a

K -linear isomorphism.
We also say that L/K is H-Galois.
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Induced Hopf Galois structures

L/K finite separable extension, L̃ Galois closure.

G = Gal(L̃/K ), G′ = Gal(L̃/L), X = G/G′.

λ : G −→ Perm(X )
σ 7−→ τ 7→ στ

Theorem (Greither-Pareigis)

The Hopf Galois structures of L/K are in one-to-one
correspondence with regular subgroups of Perm(X ) normalized
by λ(G).

If N is such a subgroup, the Hopf algebra of the corresponding
Hopf Galois structure is

H = L̃[N]G = {x ∈ L̃[N] |σ(x) = x for all σ ∈ G}.
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Induced Hopf Galois structures

L

K

Qp

L/K extension of p-adic fields.

(H, µ) Hopf Galois structure of L/K .

L is H-free of rank one:
∃α ∈ L : {w · α : w ∈W} K -basis of L,
W K -basis of H.

OL/OK extension of integer rings.

The associated order of OL in H is

AH : = {h ∈ H |h · OL ⊂ OL}.

Two kind of problems:

Is OL AH -free?
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Induced Hopf Galois structures

A motivating example
Matrix of the action
The reduction method

L = Q3(α), α root of f (x) = x3 + 3x2 + 3 in Q3.

Unique Hopf Galois structure of L/Q3: H with Q3-basis

w1 = Id w2 = (σ − σ−1)z w3 = σ + σ−1

where σ ∈ Gal(L̃/Q3) is a 3-cycle and z ∈ L−Q3, z2 ∈ Q3.

OL = Z3[α] =⇒ {1, α, α2} Z3-basis of OL.

1 α α2

w1 1 α α2

w2 0 27 + 81α + 18α2 −27− 270α− 81α2

w3 2 −3− α 9− α2

,

Daniel Gil Muñoz Method to compute the associated order
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AH = {h ∈ H |h · x ∈ OL for all x ∈ OL}.

For h =
∑3

i=1 hiwi ∈ H and x =
∑3

j=1 xjα
j−1 ∈ OL,

h · x = [x1(h1 + 2h3) + x2(27h2 − 3h3) + x3(−27h2 + 9h3)]

+ [x2(h1 + 81h2 − h3) + x3(−270h2)]α

+ [x2(18h2) + x3(h1 − 81h2 − h3)]α2.

h ∈ AH if and only if
h1 + 2h3,

27h2 − 3h3, h1 + 81h2 − h3, 18h2,

−27h2 + 9h3, −270h2, h1 − 81h2 − h3

are 3-adic integers.
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Daniel Gil Muñoz Method to compute the associated order



Introduction
Determination of the associated order

Induced Hopf Galois structures

A motivating example
Matrix of the action
The reduction method

AH = {h ∈ H |h · x ∈ OL for all x ∈ OL}.

For h =
∑3

i=1 hiwi ∈ H and x =
∑3

j=1 xjα
j−1 ∈ OL,

h · x = [x1(h1 + 2h3) + x2(27h2 − 3h3) + x3(−27h2 + 9h3)]

+ [x2(h1 + 81h2 − h3) + x3(−270h2)]α

+ [x2(18h2) + x3(h1 − 81h2 − h3)]α2.

h ∈ AH if and only if
h1 + 2h3,

27h2 − 3h3, h1 + 81h2 − h3, 18h2,

−27h2 + 9h3, −270h2, h1 − 81h2 − h3

are 3-adic integers.
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Induced Hopf Galois structures

A motivating example
Matrix of the action
The reduction method

h ∈ AH if and only if

1 0 2
0 0 0
0 0 0
0 27 −3
1 81 −1
0 18 0
0 −27 9
0 −270 0
1 −81 −1



h1
h2
h3

 ∈ Z9
3
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Induced Hopf Galois structures

A motivating example
Matrix of the action
The reduction method

h ∈ AH if and only if1 0 2
0 9 3
0 0 6

h1
h2
h3

 ∈ Z3
3

if and only if h1
h2
h3

 =
1
18

18 0 −6
0 2 −1
0 0 3

c1
c2
c3


for some c1, c2, c3 ∈ Z3.

=⇒ {w1,
w2
9 ,
−6w1−w2+3w3

18 } Z3-basis of AH .
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Induced Hopf Galois structures

A motivating example
Matrix of the action
The reduction method

L/K H-Galois of degree n.

W = {wi}ni=1 K -basis of H, B = {γj}nj=1 K -basis of L.

For 1 ≤ j ≤ n, set

Mj(H,L) : =

 | | . . . |
(w1 · γj)B (w2 · γj)B . . . (wn · γj)B
| | . . . |

 ∈Mn(K ),

Definition
The matrix of the action of H over L is defined as

M(H,L) =

M1(H,L)

· · ·
Mn(H,L)

 ∈Mn2×n(K ).
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Daniel Gil Muñoz Method to compute the associated order



Introduction
Determination of the associated order

Induced Hopf Galois structures

A motivating example
Matrix of the action
The reduction method

L/K H-Galois of degree n.

W = {wi}ni=1 K -basis of H, B = {γj}nj=1 K -basis of L.

For 1 ≤ j ≤ n, set

Mj(H,L) : =

 | | . . . |
(w1 · γj)B (w2 · γj)B . . . (wn · γj)B
| | . . . |

 ∈Mn(K ),

Definition
The matrix of the action of H over L is defined as

M(H,L) =

M1(H,L)

· · ·
Mn(H,L)

 ∈Mn2×n(K ).
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Induced Hopf Galois structures

A motivating example
Matrix of the action
The reduction method

Alternative definition of M(H,L):

Let ϕ : Mn(K ) −→ K n2
the map that carries matrices to

columns of vectors.

If n = 2, ϕ
((

a11 a12
a21 a22

))
=


a11
a21
a12
a22

.

ρH : H −→Mn(K ) linear representation, ρH(wi) ≡ wi .

Then, the matrix of the action is defined as:

M(H,L) : =

 | | . . . |
ϕ(w1) ϕ(w2) . . . ϕ(wn)
| | . . . |

 ∈Mn(K ),
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columns of vectors.
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In the motivating example,
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

M2(H,L) =

0 27 −3
1 81 −1
0 18 0


M3(H,L) =

0 −27 9
0 −270 0
1 −81 −1


M(H,L) =

M1(H,L)

M2(H,L)

M3(H,L)


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Proposition

Suppose that B = {γj}nj=1 is an OK -basis of OL. Given h ∈ H,

h ∈ AH ⇐⇒ M(H,L)h ∈ On2

K

Definition
A reduced matrix of M(H,L) is a matrix D such that there is
some unimodular matrix U ∈Mn(OK ) such that

UM(H,L) =

(
D
O

)

Equivalently, if

M(H,L) = dM, d ∈ K , M ∈Mn(OK ),

then D = dΦ with UM =

(
Φ

O

)
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Proposition

The reduced matrix of M(H,L) always exists.

Corollary

Let D be a reduced matrix of M(H,L). Given h ∈ H,

h ∈ AH if and only if Dh ∈ On
K .

Theorem (G., Rio)

Let D be a reduced matrix of M(H,L) and call D−1 = (dij)
n
i,j=1.

The elements

vi =
n∑

l=1

dliwl , 1 ≤ i ≤ n

form an OK -basis of AH .
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Example
In the motivating example:

D =

1 0 2
0 9 3
0 0 6

 is a reduced matrix of M(H,L).

The inverse is D−1 = 1
18

18 0 −6
0 2 −1
0 0 3

.

AH has a basis formed by

v1 = w1 v2 =
w2

9
v3 =

−6w1 − w2 + 3w3

18
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L/K H-Galois extension of p-adic fields.

Reduction method
W K -basis of H, B OK -basis of OL.

1. Determine the matrix of the action M(H,L).

2. Decompose M(H,L) = dM, d ∈ K , M ∈Mn(OK ).
3. Find an unimodular matrix U such that UM is a square

matrix Φ and zero rows (for instance, Hermite normal
form).

4. Compute the inverse of D = dΦ. Its columns form an
OK -basis of AH .
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Daniel Gil Muñoz Method to compute the associated order



Introduction
Determination of the associated order

Induced Hopf Galois structures

A motivating example
Matrix of the action
The reduction method

L/K H-Galois extension of p-adic fields.

Reduction method
W K -basis of H, B OK -basis of OL.

1. Determine the matrix of the action M(H,L).
2. Decompose M(H,L) = dM, d ∈ K , M ∈Mn(OK ).
3. Find an unimodular matrix U such that UM is a square

matrix Φ and zero rows (for instance, Hermite normal
form).

4. Compute the inverse of D = dΦ. Its columns form an
OK -basis of AH .
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Some remarks:

If D is a reduced matrix of M(H,L), D is a change basis
matrix from a basis of AH .

Consequently, D−1 is also a change basis matrix that
provides the desired basis.
The reduction method provides a basis of AH from a basis
of OL.
If we perform the reduction method with a basis of AH , we
obtain as reduced matrix the identity.

Daniel Gil Muñoz Method to compute the associated order
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Daniel Gil Muñoz Method to compute the associated order



Introduction
Determination of the associated order

Induced Hopf Galois structures

A motivating example
Matrix of the action
The reduction method

Some remarks:
If D is a reduced matrix of M(H,L), D is a change basis
matrix from a basis of AH .
Consequently, D−1 is also a change basis matrix that
provides the desired basis.
The reduction method provides a basis of AH from a basis
of OL.

If we perform the reduction method with a basis of AH , we
obtain as reduced matrix the identity.
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L/K Galois extension with group of the form

G = J o G′,

J E G, G′ ≤ G. Let L1 = LG′
, L2 = LJ .

r := [L1 : K ], s := [L : L1].

Theorem (Crespo, Rio, Vela)

If N1 ≤ Sr gives L1/K a H-G structure
and N2 ≤ Ss gives L/L1 a H-G structure,
then N := N1 × N2 ≤ Sn gives L/K a H-G
structure.
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L

L1 L2

K

Lemma
There is a one-to-one correspondence
between the Hopf Galois structures of L/L1
and the Hopf Galois structures of L2/K .

G′ ∼= G/J =⇒ Perm(G′) ∼= Perm(G/J)

N2 ≤ Perm(G′)←→ N2 ≤ Perm(G/J)

Proposition (G., Rio)

H is an induced Hopf Galois structure of L/K if and only if

H = H1 ⊗K H2,

where H1 is a Hopf Galois structure of L1/K and H2 is a Hopf
Galois structure of L2/K .
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L

L1 L2

K

L/K H-Galois extension of fields.

H = H1 ⊗K H2 induced.

What is the relation between M(H,L),
M(H1,L1) and M(H2,L2)?

Is it true that AH = AH1 ⊗OK AH2?

Definition
The Kronecker product of two matrices A = (aij) and B is the
matrix defined by blocks as

A⊗ B = (aijB).
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Theorem (G., Rio)
When in L we consider the product of the bases of L1 and L2,
there is a permutation matrix (hence unimodular)
P ∈ GLn2(OK ) such that

PM(H,L) = M(H1,L1)⊗M(H2,L2).

Definition
A K -basis of L with the property of the previous result is called
induced.

The product of the fixed K -bases of L1 and L2 is induced.

If L1/K and L2/K are arithmetically disjoint, the product of
their fixed integral bases is an integral induced basis.

Daniel Gil Muñoz Method to compute the associated order



Introduction
Determination of the associated order

Induced Hopf Galois structures

Induced associated order
An application: Dihedral extensions

Theorem (G., Rio)
When in L we consider the product of the bases of L1 and L2,
there is a permutation matrix (hence unimodular)
P ∈ GLn2(OK ) such that

PM(H,L) = M(H1,L1)⊗M(H2,L2).

Definition
A K -basis of L with the property of the previous result is called
induced.

The product of the fixed K -bases of L1 and L2 is induced.

If L1/K and L2/K are arithmetically disjoint, the product of
their fixed integral bases is an integral induced basis.
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Daniel Gil Muñoz Method to compute the associated order



Introduction
Determination of the associated order

Induced Hopf Galois structures

Induced associated order
An application: Dihedral extensions

Theorem (G., Rio)

If L/K has some integral induced basis, then

AH = AH1 ⊗OK AH2 .

Sketch of proof:

PM(H,L) = M(H1,L1)⊗M(H2,L2) for some unimodular P.

D is a reduced matrix of M(H,L)⇐⇒
D is a reduced matrix of M(H1,L1)⊗M(H2,L2).

Di reduced matrix of M(Hi ,Li), i ∈ {1,2} =⇒
D1 ⊗ D2 reduced matrix of M(H,L)

(D1 ⊗ D2)−1 = D1
−1 ⊗ D2

−1 =⇒ AH = AH1 ⊗OK AH2 .
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arithmetically disjoint and AH = AH1 ⊗Z3 AH2 .
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